我的书包

082 谬(上一章应该是081,序号错了)

+A -A

    ……



    “争锋了……”他呆呆说道。



    范牙话音落下的同时,吴孰子便展开质问:“所谓无穷小,若非0,当如何表述?”



    吴孰子:“那你又从何而知,圆周率为谬数呢?”



    “…………”庞牧张大了嘴,这次是真的不敢说了。



    “我看到了,这也正是中的论说。”檀缨不紧不慢道,“你以为,一切数字皆可用‘两个整数之比’表达,不可表达的数字并不存在,数轴是连续、规律而又稠密的。”



    檀缨苦笑:“我当然可证,但要用范画时的证。”



    “假设我率法家站在檀缨这边,尔等随我赴墨馆,于此地诛杀吴孰子并非难事。



    卡察!



    “然此争只是学论之争,并非生死之争。



    “吞不吞倒是其次。”韩孙道,“我说的是带武论的争锋,比如现在吴孰要当堂毙杀檀缨,你可去救?”



    “对谈二人,既为两家魁首,又有根基之悖。



    檀缨:“那么它到底是多少?”



    “之后宣称吴孰子失道,并支持司业为新任巨子。



    檀缨与吴孰子对席而坐。



    “数乃万物之本,数便是数,切实存在的数。



    重整旗鼓后,范牙继续主持:



    “若无异议。



    檀缨:“圆周率可为谬?”



    听着韩孙的推演,没人敢说接茬,庞牧都闭目不敢言。



    “法家,随我去那墨馆。”



    吴孰子:“此为以谬证谬,不证也

    庞牧的杯子终于掉到了地上。



    檀缨:“那请举出它如何表达。”



    吴孰子:“要等我们做出完美的圆,辅以完美的尺才能测得。”



    “是如此。”



    倒是赢璃幽幽一叹:“老师又在开异态的玩笑了。”



    “胡闹。”吴孰只澹澹摇头,继而说道:



    韩孙却自顾自算计起来:



    韩孙则只一舒气,起身抬臂一斩:



    “若学王尤在,或愿走此险棋。”



    “哈哈。”韩孙大笑,“确实是玩笑,但也是铺陈。若真出现了那一刻,希望你们也想得如我这般清楚,当断则断,莫要耽误时机。”



    “若是那样,司业会很难,但他最后会站在檀缨这边。



    “此谈,即争锋之谈。



    “故任何一方,都可随时言败,不可武论。



    墨学馆。



    白丕再次折返跑了回来。



    吴孰子:“数理之道殷实确凿,唯证可破。你在此含湖其辞,只是耽误所有人的时间罢了,莫学那名家。”



    “自此,我秦地便独占法、墨、唯物之尊,便是三家圣地了。



    吴孰子:“任意一圆的周长,除以直径,便是它的比值,而任何比值最终都可以化为两个整数之比。”



    “是如此。”



    吴孰子:“不能。但它存在,便如天道一般。”



    吴孰子:“非谬。”



    “此为畅谈,吴孰子可尽驳之,檀缨亦可反驳。



    “巨子,请驳。”



    众人沉默之间。



    檀缨当即作答:“我们随意创造一个符号表述便是了。”



    吴孰子只澹然抬手:“请。”



    “争锋之间,恐有噬道、融道,还请二人二家,知之认之。



    檀缨:“很好,我与范画时说的无限小,也正是这样的存在,你可理解一些了?”



    檀缨:“完美的圆我们能做出来么?”



    “既存在,便可表达,如你我可被探知一样。



    为了不影响范画时,清谈场地,连同题板被一同搬到了大堂中央。



    “不可表达为谬,非数,如那神灵鬼巫不可被探知一样。”



    “檀缨的解题,便为其论。



    “好。”檀缨说着晃了晃头,“那么接下来,我将证明,你所谓的谬,是切实存在的,数轴并不连续,任何两个数之间,都充满了谬。”



    “而范画时在她所创的中,以两个不存在的数字相除,却能求得切实的结果,于你而言这便是谬上加谬,就算结果存在,也是谬论。”



么吞的阴阳家,那檀缨有几条命也不够吴孰吞的啊。”



    檀缨:“谈不上耽误,我只是随便举一个谬数,岂料你竟如此坚称。”


【1】【2】【3】【4】
如果您喜欢【我的书包】,请分享给身边的朋友
">