我的书包

第二百五十九章 见证奇迹吧!(xia)

+A -A

    当然是赖在两个对立的平行墙面之间。

    铜球依旧不变,不过连接铜球的铜棒长度统一恒定在了12英寸,正方形锌板的边长则是16英寸。

    不过还是那句话。

    赖在那里不走呢?

    而按照波动光学的观点。

    不过很快。

    那么这样一来,验证电磁波的问题便可以归结到另一个新环节了:

    现象依旧令人震撼,但似乎......

    随着光线的反射,接收器上也同时出现了火花。

    1850年的科学界对于微观领域的认知还是太狭窄了,因此徐云并不准备在此时把整个光电效应的真相解释清楚。

    “这是一个金属屑检波器。”

    法拉第等人又彼此对视了一眼,瞳孔中闪过一丝疑惑。

    第一刀就是截止频率。

    法拉第见状不由站起身,走到徐云身边,指着玻璃管道:

    随着电压的升高,火花再次出现了。

    也就是对于某种金属材料,只有当入射光的频率大于某一频率v0时,电子才能从金属表面逸出形成光电流。

    比起昨天的实验,今天徐云所准备的发生器在规格上要更加精细一些:

    没人知道答案,才能叫做乌云嘛。

    咻——

    因此电子动能上限应随着光强和照射时间而变化,也就是截止电压会随着光强变化。

    它的实质就是空间的共振现象,综合方程为y=y1 y2=2Acos2π(x/λ)cos2π(t/T)。

    从这个方程不难看出。

    按照波动光学的观点。

    过了一会儿。

    滋滋滋——

    按照波动光学的观点,脱离阴极的电子的动能,应该正比于正比于光强和照射时间。

    他面带感慨的看向徐云,了然道:

    徐云又最后检查了一番设备,接着按下了设备开关。

    如果入射光的频率v小于截止频率v0,那么无论入射光的光强多大,都不能产生光电效应。

    一个空间有三组对立的平行墙面,也就是你的前后、左右和上下。

    玻璃管外则有一根导线,导线两端与玻璃管的两头对应连接,形成了一个回路,其中一端还挂着一台电压表。

    而除了反杀波动说之外。

    他只是一个普通的搬运工,做了一点微小的工作而已,解答的事儿还是另请高明吧。

吧,至少可以算是‘暗室’的标准了。

    无论频率是多少,只要光强大,时间长,电子就能获得足够的动能脱离阴极。

    众所周知。

   

    光电效应的另一个概念级意义,就是验证了电磁波的存在。

    要知道。

    这一频率v0称为截止频率,也称红限频率,极限频率。

    怎么确定节距?

    在1887年,赫兹用一个精妙的设计给出了答案:

    徐云看了他一眼,扬了扬玻璃管,笑着解释道:

    紧接着。

    那么赫兹是怎么实锤验证电磁波的呢?

    第二刀是不能解释为什么存在截止电压,且只随频率变化:

    与昨天的没什么差别?

    答案就是驻波法。

    但事实上在光电效应中无论何光强,只要满足截止频率和截止电压的要求,光电效应的产生时间都在10e-14s量级。

    在特定截止电压下,产生光电效应的时间应该与光强成反比。

    法拉第的注意力便被徐云手中的某个东西吸引了:

    光电效应作为物理学史上一个闪耀无比的节点,它在理论上的衍生方向多如牛毛,但在概念意义上其实主要只有两点。

    驻波的节距等于n倍的半波长,所以只要知道节距就能计算出原本的波长。

    如果单看光电效应现象本身,其实是不足以支撑电磁波...或者说“初级线圈电磁振荡,次级线圈受到感应”这个结论的。

    第三刀则是瞬时性的问题——即使光很弱,光电效应的反应时间还是很快,而且不随光强变化。

    简单的说,驻波驻波,就是赖着不走的波。

    很快。

    “金属屑检波器?”

    那是一个类似手电筒大小的玻璃管,内中放着一些黑色的粉末,看起来有些像是芝麻粉。

    首先便是反驳了光的波动说——它给波动说的大动脉上狠狠的来了三刀。

    只见他猛然抬起头,目光看向了那块固定在墙上的巨大镀锌金属板。

    徐云笑着点了点头。

    见此情形。

    法拉第重复了几遍这个词,忽然想到了什么。

    “罗峰同学,这是什么东西?”

    “原来如此....我明白了,是驻波,肥鱼先生他利用了驻波,对吗?”


【1】【2】【3】【4】
如果您喜欢【我的书包】,请分享给身边的朋友
">